12 research outputs found

    RSSI-based Localization Algorithms using Spatial Diversity in Wireless Sensor Networks

    Get PDF
    Accepted for publication in International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC)International audienceMany localization algorithms in Wireless Sensor Networks (WSNs) are based on received signal strength indication (RSSI). Although they present some advantages in terms of complexity and energy consumption, RSSI values, especially in indoor environments, are very unstable due to fading induced by shadowing effect and multipath propagation. In this paper, we propose a comparative study of RSSI-based localization algorithms using spatial diversity in WSNs. We consider different kinds of single / multiple antenna systems: Single Input Single Output (SISO) system, Single Input Multiple Output (SIMO) system, Multiple Input Single Output (MISO) system and Multiple Input Multiple Output (MIMO) system. We focus on the well known trilateration and multilateration localization algorithms to evaluate and compare different antenna systems. Exploiting spatial diversity by using multiple antenna systems improve significantly the accuracy of the location estimation. We use three diversity combining techniques at the receiver: Maximal Ratio Combiner (MRC), Equal Gain Combining (EGC) and Selection Combining (SC). The obtained results show that the localization performance in terms of position accuracy is improved when using multiple antennas. Specifically, using multiple antennas at the both sides present better performance than using multiple antennas at the transmitter as well as the receiver side. We also conclude that MRC diversity combining technique outperforms EGC that as well outperforms SC

    Radio Resource Sharing for MTC in LTE-A: An Interference-Aware Bipartite Graph Approach

    Get PDF
    International audienceTraditional cellular networks have been considered the most promising candidates to support machine to machine (M2M) communication mainly due to their ubiquitous coverage. Optimally designed to support human to human (H2H) communication, an innovative access to radio resources is required to accommodate M2M unique features such as the massive number of machine type devices (MTDs) as well as the limited data transmission session. In this paper, we consider a simultaneous access to the spectrum in an M2M/H2H coexistence scenario. Taking the advantage of the new device to device (D2D) communication paradigm enabled in long term evolution-advanced (LTE-A), we propose to combine M2M and D2D owing to the MTD low transmit power and thus enabling efficiently the resource sharing. First, we formulate the resource sharing problem as a maximization of the sum-rate, problem for which the optimal solution has been proved to be non deterministic polynomial time hard (NP-Hard). We next model the problem as a novel interference-aware bipartite graph to overcome the computational complexity of the optimal solution. To solve this problem, we consider here a two-phase resource allocation approach. In the first phase, H2H users resource assignment is performed in a conventional way. In the second phase, we introduce two alternative algorithms, one centralized and one semi-distributed to perform M2M resource allocation. The computational complexity of both introduced algorithms whose aim is to solve the M2M resource allocation, is of polynomial complexity. Simulation results show that the semi-distributed M2M resource allocation algorithm achieves quite good performance in terms of network aggregate sum-rate with markedly lower communication overhead compared to the centralized one

    Adaptive and efficient radio resource sharing schemes for machine type communications underlying cellular networks

    No full text
    L'Internet des objets (IoT) fait référence à la croissance continue des réseaux d'objets du quotidien qui s'interconnectent entre eux ou avec d'autres systèmes Internet via les capteurs sans fil qui y sont attachés. L'IoT promet un futur où des milliards de terminaux intelligents seront connectés et gérés via une gamme de réseaux de communication et de serveurs basés dans le cloud, permettant ainsi l'apparition d'un large spectre d’applications de surveillance et de contrôle. Les communications machine-à-machine (M2M), également connues sous le nom de “Machine-Type-Communication” (MTC) par les réseaux cellulaires, constituent une technologie clé permettant d'activer partiellement l'IoT. Les communications M2M sont un nouveau paradigme qui facilite la connectivité omniprésente entre une myriade de dispositifs sans ou avec intervention humaine limitée. La demande croissante de connectivité a mis au défi les opérateurs de réseau à concevoir de nouveaux algorithmes d'allocation de ressources radio pour gérer l'échelle massive des communications MTC.Contrairement aux technologies d'accès radio traditionnelles, adaptées aux communications usuelles, dites de humain-à-humain (H2H), l'objectif de cette thèse est de développer de nouvelles techniques de partage de ressources radio efficaces et adaptatives pour les MTC dans un scénario de coexistence H2H/M2M. Dans le cadre de cette thèse, notre première contribution consiste en la proposition d'un système d'accès multiple adapté pour résoudre à la fois les problèmes liés à la rareté des ressources radio, à la scalabilité et à la surcharge de la station de base (BS). À cette fin, nous proposons de décomposer les opérations de communication en les groupant. Ainsi, les MTC correspondent à des communications locales en liaison montante entre des dispositifs connus sous le nom de “Machine-Type-Device” (MTD), et un cluster head appelé “Machine-Type- Head” (MTH). Nous examinons ainsi la nécessité d'agréger la technologie M2M et le “dispositif-à-dispositif” (D2D), considéré comme composante majeure des réseaux cellulaires évolutifs du futur. Nous modélisons le problème de partage de ressources radio entre les MTDs et les utilisateurs H2H sous la forme d’un graphe biparti et développons un algorithme de partage de ressources radio pour MTC basé sur les graphes afin d’atténuer les interférences co-canal et donc améliorer l'efficacité du réseau. En outre, une solution semi-distribuée de faible complexité est développée pour atténuer la surcharge de communication d'une solution centralisée que nous proposons également. Ensuite, dans une deuxième contribution de cette thèse, nous nous intéressons à examiner comment les dispositifs M2M peuvent partager les ressources radio disponibles sans pour autant dégrader les performances des applications H2H. Par conséquent, nous proposons un système de partage de ressources efficace en terme de spectre et de puissance. Nous introduisons à l'algorithme de partage de ressources radio basé sur les graphes une fonction adaptative de contrôle de puissance utilisant l'un des deux mécanismes suivants : un contrôleur proportionnel intégral dérivé (PID) et la logique floue. Enfin, comme troisième contribution de cette thèse, nous développons un système de partage de ressources radio efficace en terme de puissance et entièrement distribué pour les MTC. Nous utilisons la théorie des jeux et modélisons le problème de partage de ressources par un jeu hybride où les dispositifs M2M rivalisent pour les ressources radio et basculent de façon opportuniste entre un jeu non-coopératif et un jeu coopératif. Une évaluation des performances des solutions dérivées dans le contexte des réseaux LTE est menée. Les résultats des simulations montrent que les solutions proposées ont un impact significatif sur la maximisation de l'efficacité de l'utilisation du spectre, l'atténuation de l'effet négatif sur les services H2H et la prolongation de la durée de vie des batteries des MTDsThe Internet-of-Things (IoT) refers to the ever-growing network of everyday objects that interconnect to each other or to other Internet-enabled systems via wireless sensors attached to them. IoT envisions a future where billions of smart devices will be connected and managed through a range of communication networks and cloud-based servers, enabling a variety of monitoring and control applications. Machine-to-Machine (M2M) communications supported by cellular networks, also known as Machine-Type-Communications (MTC) acts as a key technology for partially enabling IoT. M2M communications is a new technology paradigm that facilitates the ubiquitous connectivity between a myriad of devices without requiring human intervention. The surge in the demand for connectivity has further challenged network operators to design novel radio resource allocation algorithms at affordable costs to handle the massive scale of MTC.Different from current radio access technologies tailored to traditional Human- to-Human (H2H) communications, the goal of this thesis is to provide novel efficient and adaptive radio resource sharing schemes for MTC under a H2H/M2M coexistence scenario. We first provide a suitable multiple access scheme to address the joint spectrum scarcity, scalability and Base Station (BS) overload issues. Toward this end, we design a group-based operation where MTC corresponds to local uplink communications between Machine-Type-Devices (MTDs), which represent a specific type of devices that do not rely on the presence of a human interface, and a Machine-Type-Head (MTH). This latter plays the role of a cluster head that relays the information to the BS. We thus address the need to aggregate M2M and Device-to-Device (D2D) technology, as one of the major components of the future evolving cellular networks. Having said that, we first propose in this thesis to model the radio resource sharing problem between MTDs and H2H users as a bipartite graph and develop a novel interference-aware graph-based radio resource sharing algorithm for MTC so as to mitigate the co-channel interference and thus enhance network efficiency. Moreover, low-complexity semi-distributed solution is investigated to alleviate the communication overhead of a centralized solution that we propose as well. Then, as a second contribution, we examine how M2M devices can share the available radio resources in cellular networks with no or limited impact on existing H2H services. Consequently, we propose a joint spectrally and power efficient radio resource sharing scheme. Convinced by the strength of the bipartite graph modeling for the resource sharing problem between H2H users and M2M devices, we empower the graph-based radio resource sharing algorithm with a novel adaptive power control feature using one of two following mechanisms: the Proportional Integral Derivative (PID) controller and the fuzzy logic. Finally, in our third contribution of this thesis, we develop a power efficient and fully-distributed radio resource sharing framework for MTC underlying cellular networks. We use game theory and model the resource sharing problem as an efficient hybrid-game where M2M devices compete for radio resources and switch opportunistically, as M2M devices are selfish in nature, between non-cooperative and cooperative games. The different derived solutions are extended to existing cellular networks, and extensive simulation studies in the context of LTE are conducted. The various simulation results show that the proposed solutions can significantly increase the efficiency of the spectrum usage, mitigate the negative effect on H2H services and save the battery life of M2M device

    Algorithmes adaptatifs et efficaces de partage de ressources radio pour les communications de type MTC : cas de coexistence H2H/M2M

    No full text
    The Internet-of-Things (IoT) refers to the ever-growing network of everyday objects that interconnect to each other or to other Internet-enabled systems via wireless sensors attached to them. IoT envisions a future where billions of smart devices will be connected and managed through a range of communication networks and cloud-based servers, enabling a variety of monitoring and control applications. Machine-to-Machine (M2M) communications supported by cellular networks, also known as Machine-Type-Communications (MTC) acts as a key technology for partially enabling IoT. M2M communications is a new technology paradigm that facilitates the ubiquitous connectivity between a myriad of devices without requiring human intervention. The surge in the demand for connectivity has further challenged network operators to design novel radio resource allocation algorithms at affordable costs to handle the massive scale of MTC.Different from current radio access technologies tailored to traditional Human- to-Human (H2H) communications, the goal of this thesis is to provide novel efficient and adaptive radio resource sharing schemes for MTC under a H2H/M2M coexistence scenario. We first provide a suitable multiple access scheme to address the joint spectrum scarcity, scalability and Base Station (BS) overload issues. Toward this end, we design a group-based operation where MTC corresponds to local uplink communications between Machine-Type-Devices (MTDs), which represent a specific type of devices that do not rely on the presence of a human interface, and a Machine-Type-Head (MTH). This latter plays the role of a cluster head that relays the information to the BS. We thus address the need to aggregate M2M and Device-to-Device (D2D) technology, as one of the major components of the future evolving cellular networks. Having said that, we first propose in this thesis to model the radio resource sharing problem between MTDs and H2H users as a bipartite graph and develop a novel interference-aware graph-based radio resource sharing algorithm for MTC so as to mitigate the co-channel interference and thus enhance network efficiency. Moreover, low-complexity semi-distributed solution is investigated to alleviate the communication overhead of a centralized solution that we propose as well. Then, as a second contribution, we examine how M2M devices can share the available radio resources in cellular networks with no or limited impact on existing H2H services. Consequently, we propose a joint spectrally and power efficient radio resource sharing scheme. Convinced by the strength of the bipartite graph modeling for the resource sharing problem between H2H users and M2M devices, we empower the graph-based radio resource sharing algorithm with a novel adaptive power control feature using one of two following mechanisms: the Proportional Integral Derivative (PID) controller and the fuzzy logic. Finally, in our third contribution of this thesis, we develop a power efficient and fully-distributed radio resource sharing framework for MTC underlying cellular networks. We use game theory and model the resource sharing problem as an efficient hybrid-game where M2M devices compete for radio resources and switch opportunistically, as M2M devices are selfish in nature, between non-cooperative and cooperative games. The different derived solutions are extended to existing cellular networks, and extensive simulation studies in the context of LTE are conducted. The various simulation results show that the proposed solutions can significantly increase the efficiency of the spectrum usage, mitigate the negative effect on H2H services and save the battery life of M2M devicesL'Internet des objets (IoT) fait référence à la croissance continue des réseaux d'objets du quotidien qui s'interconnectent entre eux ou avec d'autres systèmes Internet via les capteurs sans fil qui y sont attachés. L'IoT promet un futur où des milliards de terminaux intelligents seront connectés et gérés via une gamme de réseaux de communication et de serveurs basés dans le cloud, permettant ainsi l'apparition d'un large spectre d’applications de surveillance et de contrôle. Les communications machine-à-machine (M2M), également connues sous le nom de “Machine-Type-Communication” (MTC) par les réseaux cellulaires, constituent une technologie clé permettant d'activer partiellement l'IoT. Les communications M2M sont un nouveau paradigme qui facilite la connectivité omniprésente entre une myriade de dispositifs sans ou avec intervention humaine limitée. La demande croissante de connectivité a mis au défi les opérateurs de réseau à concevoir de nouveaux algorithmes d'allocation de ressources radio pour gérer l'échelle massive des communications MTC.Contrairement aux technologies d'accès radio traditionnelles, adaptées aux communications usuelles, dites de humain-à-humain (H2H), l'objectif de cette thèse est de développer de nouvelles techniques de partage de ressources radio efficaces et adaptatives pour les MTC dans un scénario de coexistence H2H/M2M. Dans le cadre de cette thèse, notre première contribution consiste en la proposition d'un système d'accès multiple adapté pour résoudre à la fois les problèmes liés à la rareté des ressources radio, à la scalabilité et à la surcharge de la station de base (BS). À cette fin, nous proposons de décomposer les opérations de communication en les groupant. Ainsi, les MTC correspondent à des communications locales en liaison montante entre des dispositifs connus sous le nom de “Machine-Type-Device” (MTD), et un cluster head appelé “Machine-Type- Head” (MTH). Nous examinons ainsi la nécessité d'agréger la technologie M2M et le “dispositif-à-dispositif” (D2D), considéré comme composante majeure des réseaux cellulaires évolutifs du futur. Nous modélisons le problème de partage de ressources radio entre les MTDs et les utilisateurs H2H sous la forme d’un graphe biparti et développons un algorithme de partage de ressources radio pour MTC basé sur les graphes afin d’atténuer les interférences co-canal et donc améliorer l'efficacité du réseau. En outre, une solution semi-distribuée de faible complexité est développée pour atténuer la surcharge de communication d'une solution centralisée que nous proposons également. Ensuite, dans une deuxième contribution de cette thèse, nous nous intéressons à examiner comment les dispositifs M2M peuvent partager les ressources radio disponibles sans pour autant dégrader les performances des applications H2H. Par conséquent, nous proposons un système de partage de ressources efficace en terme de spectre et de puissance. Nous introduisons à l'algorithme de partage de ressources radio basé sur les graphes une fonction adaptative de contrôle de puissance utilisant l'un des deux mécanismes suivants : un contrôleur proportionnel intégral dérivé (PID) et la logique floue. Enfin, comme troisième contribution de cette thèse, nous développons un système de partage de ressources radio efficace en terme de puissance et entièrement distribué pour les MTC. Nous utilisons la théorie des jeux et modélisons le problème de partage de ressources par un jeu hybride où les dispositifs M2M rivalisent pour les ressources radio et basculent de façon opportuniste entre un jeu non-coopératif et un jeu coopératif. Une évaluation des performances des solutions dérivées dans le contexte des réseaux LTE est menée. Les résultats des simulations montrent que les solutions proposées ont un impact significatif sur la maximisation de l'efficacité de l'utilisation du spectre, l'atténuation de l'effet négatif sur les services H2H et la prolongation de la durée de vie des batteries des MTD

    Comparative analysis of RSSI-based indoor localization when using multiple antennas in wireless sensor networks

    No full text
    International audienceRSSI-based location estimation method in Wireless Sensor Networks (WSNs) present some advantages in terms of complexity and energy consumption. However, the propagation of the radiofrequency signals in indoor environments is subject to fading induced by shadowing effect and multipath propagation. Accurate wireless location estimation can be achieved by employing multiple antennas. In this paper, we make a comparison among three system models in order to show the impact of using multiple antennas on position accuracy at either the transmitter, the receiver side or at the both sides. We use the multilateration as well as the trilateration algorithms to calculate the position error. The obtained results illustrate that the localization performance is improved when using multiple antennas. Specifically, using multiple antennas at the both sides present better performance than using multiple antennas at either the transmitter or the receiver

    Graph-Based Radio Resource Sharing Schemes for MTC in D2D-based 5G Networks

    No full text
    International audienceApart from the the increasing demand of smartphones in human-to-human (H2H) communications, the introduction of machine-to-machine (M2M) devices poses significant challenges to wireless cellular networks. In order to offer the ability to connect billion of devices to propel the society into a new era of connectivity in our homes, officies and smart cities, we design novel radio resource sharing algorithms in a H2H/M2M coexistence case to accommodate M2M communications while not severely degrading existing H2H services. We propose group-based M2M communications that share the same spectrum with H2H communications through device-to-device (D2D) communication, as one of the technology components of 5G architecture. First, we formulate radio resource sharing problem as a sum-rate maximization, problem for which the optimal solution is non-deterministic polynomial-time hard (NP-hard). To overcome the computational complexity of the optimal solution, we model the resource sharing problem as a bipartite graph, then propose a novel interference-aware graph-based resource sharing scheme using a fixed M2M transmit power. To further enhance the protection of H2H services, we introduce an adaptive power control mechanism into the interference-aware graph-based resource sharing scheme. M2M transmit power is efficiently adjusted using one among the two following alternative controllers, namely, either the proportional integral derivative (PID) or the fuzzy logic. The latter is proposed within the aim to assure the desired quality-of-service (QoS) of H2H users and increase the efficiency of M2M spectrum usage. In both cases (fixed and adaptive), a centralized and a semi-distributed instantiations are given. Simulation results show that adaptive M2M radio resource sharing scheme using fuzzy logic is the one that achieves the best compromise. In fact, it guarantees H2H performance in terms of throughput and fairness while maximizing the efficiency of M2M spectrum usage. Simulation results also show that in spite of its quite good performance, semi-distributed M2M resource sharing instantiation achieves them with a decline of up to 10% in terms of H2H throughput compared to the centralized instantiation. This is achieved through a markedly lower communication overhead

    Partage des ressources radio pour MTC dans LTE-A: Une approche basée sur le graphe biparti

    No full text
    International audienceLes réseaux cellulaires ont été considérés les candidats les plus prometteurs pour supporter la communication de machine à machine (M2M), principalement en raison de leur couverture omniprésente. Idéalement conçu pour supporter la communication de humain à humain (H2H), un accès innovant aux ressources radio est nécessaire pour tenir compte des caractéristiques M2M uniques telles que le nombre massif de dispositifs de type machine (MTDs) ainsi que leur session de transmission de données limitée. Dans cet article, nous considérons un accès simultané au spectre dans un scénario de coexistence M2M / H2H. Profitant du nouveau paradigme, communication D2D (device to device) fourni par LTE-A et motivé par la faible puissance de transmission des MTDs, nous proposons de combiner M2M et D2D afin de permettre un partage efficace des ressources. Tout d'abord, nous formulons le problème de partage des ressources ayant comme but la maximisation du débit total, problème pour lequel la solution optimale a été prouvée être de complexité non déterministe à temps polynomial dur (NP-Hard). Ensuite, nous modélisons le problème par un graphe biparti basé sur les interférences afin de réduire la complexité de calcul de la solution optimale. Pour résoudre ce problème, nous considérons ici une approche d'allocation de ressources en deux phases. Durant la première phase, l'allocation des ressources pour les utilisateurs H2H est effectuée de façon traditionnelle. Dans la deuxième phase, nous développons deux algorithmes, un centralisé et un semi-distribué, afin d'assurer l'allocation des ressources pour la communication M2M. La complexité de calcul des deux algorithmes introduits est de complexité polynomiale. Les résultats de simulation montrent que l'algorithme semi-distribué améliore nettement les performances en terme de débit total comparé à l'approche d'allocation aléatoire et atteint relativement des performances comparable à l'algorithme centralisé avec un surcoût de communication beaucoup plus faible

    Radio resource sharing for MTC in LTE-A: An approach based on the bipartite graph

    No full text
    International audienceMachine to machine (M2M) communications pose significant challenges to the cellular networks due to its unique features such as the massive number of machine type devices (MTDs) as well as the limited data transmission session. Thus, advanced cellular network releases, such as long-term evolution (LTE) and LTE-Advanced (LTE-A), optimally designed to support human to human (H2H) communications, should cater to M2M communications. In this paper, we consider an M2M/H2H coexistence scenario where a simultaneous access to the spectrum is enabled. Taking the opportunity of the new device to device (D2D) communication paradigm offered in LTE-A and at the aim of enabling an efficient resource sharing, we propose to combine M2M and D2D owing to the MTD low transmit power. First, we formulate the resource sharing problem as a maximization of the sum-rate, problem for which the optimal solution has been proved to be non deterministic polynomial time hard (NP-Hard). Then, we formulate the problem as a novel interference-aware bipartite graph to overcome the computational complexity of the optimal solution. Thus, we consider here a two-phase resource allocation approach. In the first phase, H2H radio resource assignment is performed in a conventional way. In the second phase, we introduce two algorithms, one centralized and one semi-distributed to perform the M2M resource allocation. The computational complexity of both introduced algorithms is of polynomial complexity. Simulation results show that the semi-distributed M2M resource allocation algorithm achieves quite good performance in terms of network aggregate sum-rate with markedly lower communication overhead compared to the centralized one

    Gestion adaptative des ressources radio dans un scénario de coexistence M2M/H2H

    Get PDF
    International audienceL'introduction des communications machine à machine (M2M) dans les futurs réseaux cellulaires fera l'objet d'une dégradation considérable des performances des applications traditionnelles existantes dites humain à humain (H2H). Dans cet article, nous considérons l'accès simultané aux ressources radio dans un scénario de coexistence M2M/H2H et ce à travers la technologie device-to-device (D2D). D'abord, nous formulons le problème de partage de ressources par un graphe biparti. Ensuite, nous proposons un mécanisme de contrôle de puissance pour les noeuds M2M basé sur une probabilité fixée par un contrôleur PID (proportionnel, intégrateur, dérivateur) reflétant le niveau d'interférence introduit par les noeuds M2M sur les services H2H. Enfin, nous évaluons l'impact de l'introduction des services M2M sur les performances des applications H2H en termes de débit et d'équité. Les résultats de simulation montrent que notre algorithme adaptatif de contrôle de puissance réduit l'impact des communications M2M sur les services H2H
    corecore